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Modules and vector spaces

In this chapter, we introduce the basic definitions and results concerning
modules over a ring R and vector spaces over a field F . The reader may
have seen some of these notions before, but perhaps only in the context of
vector spaces over a specific field, such as the real or complex numbers, and
not in the context of, say, finite fields like Zp.

14.1 Definitions, basic properties, and examples

Throughout this section, R denotes a ring.

Definition 14.1. An R-module is an abelian group M , which we shall write
using additive notation, together with a scalar multiplication operation
that maps a ∈ R and α ∈M to an element aα ∈M , such that the following
properties are satisfied for all a, b ∈ R and α, β ∈M :

(i) a(bα) = (ab)α,

(ii) (a+ b)α = aα+ bα,

(iii) a(α+ β) = aα+ aβ,

(iv) 1Rα = α.

One may also call an R-module M a module over R. Elements of R are
often referred to as scalars, and elements of M may be called vectors.

Note that for an R-module M , for fixed a ∈ R, the map that sends α ∈M
to aα ∈ M is a group homomorphism with respect to the additive group
operation of M ; likewise, for fixed α ∈ M , the map that sends a ∈ R to
aα ∈ M is a group homomorphism from the additive group of R into the
additive group of M .

The following theorem summarizes a few basic facts which follow directly

299
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from the observations in the previous paragraph, and basic facts about group
homomorphisms (see Theorem 8.20):

Theorem 14.2. If M is a module over R, then for all a ∈ R, α ∈M , and
m ∈ Z, we have:

(i) 0Rα = 0M ,

(ii) a0M = 0M ,

(iii) (−a)α = −(aα) = a(−α),

(iv) (ma)α = m(aα) = a(mα).

Proof. Exercise. 2

The definition of a module includes the trivial module, consisting of just
the zero element 0M . If R is the trivial ring, then any R-module is trivial,
since for all α ∈M , we have α = 1Rα = 0Rα = 0M .

Example 14.1. A simple but extremely important example of an R-module
is the set R×n of n-tuples of elements of R, where addition and scalar multi-
plication are defined component-wise—that is, for α = (a1, . . . , an) ∈ R×n,
β = (b1, . . . , an) ∈ R×n, and a ∈ R, we have

α+ β = (a1 + b1, . . . , an + bn) and aα = (aa1, . . . , aan). 2

Example 14.2. The ring of polynomials R[X] over R forms an R-module
in the natural way, with addition and scalar multiplication defined in terms
of the addition and multiplication operations of the polynomial ring. 2

Example 14.3. As in Example 9.34, let f be a monic polynomial over R
of degree ` ≥ 0, and consider the quotient ring E := R[X]/(f). Then E is
a module over R, with addition defined in terms of the addition operation
of R, and scalar multiplication defined by a[g]f := [ag]f , for a ∈ R and
g ∈ R[X]. If f = 1, then E is trivial. 2

Example 14.4. If E is any ring containing R as a subring (i.e., E is an
extension ring of R), then E is a module over R, with addition and scalar
multiplication defined in terms of the addition and multiplication operations
of E. 2

Example 14.5. If M1, . . . ,Mn are R-modules, then so is the direct product
M1 × · · · ×Mn, where addition and scalar product are defined component-
wise. 2

Example 14.6. Any abelian group G, written additively, can be viewed as
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a Z-module, with scalar multiplication defined in terms of the usual integer
multiplication map (see parts (vi)–(viii) of Theorem 8.3). 2

Example 14.7. Let G be any group, written additively, whose exponent
divides n. Then we may define a scalar multiplication that maps [m]n ∈ Zn

and α ∈ G to mα. That this map is unambiguously defined follows from the
fact that G has exponent dividing n, so that if m ≡ m′ (mod n), we have
mα −m′α = (m −m′)α = 0G, since n | (m −m′). It is easy to check that
this scalar multiplication operation indeed makes G into a Zn-module. 2

Example 14.8. Of course, viewing a group as a module does not depend on
whether or not we happen to use additive notation for the group operation.
If we specialize the previous example to the group G = Z∗p, where p is prime,
then we may view G as a Zp−1-module. However, since the group operation
itself is written multiplicatively, the “scalar product” of [m]p−1 ∈ Zp−1 and
α ∈ Z∗p is the power αm. 2

14.2 Submodules and quotient modules

Again, throughout this section, R denotes a ring. The notions of subgroups
and quotient groups extend in the obvious way to R-modules.

Definition 14.3. Let M be an R-module. A subset N is a submodule of
M if

(i) N is a subgroup of the additive group M , and

(ii) N is closed under scalar multiplication; that is, for all a ∈ R and
α ∈ N , we have aα ∈ N .

It is easy to see that a submodule N of an R-module M is also an R-
module in its own right, with addition and scalar multiplication operations
inherited from M .

Expanding the above definition, we see that a subset N of M is a sub-
module if and only if for all a ∈ R and all α, β ∈ N , we have

α+ β ∈ N, −α ∈ N, and aα ∈ N.

Observe that the condition −α ∈ N is redundant, as it is implied by the
condition aα ∈ N with a = −1R.

For m ∈ Z, it is easy to see (verify) that not only are mM and M{m}
subgroups of M (see Theorems 8.6 and 8.7), they are also submodules of M .
Moreover, for a ∈ R, aM := {aα : α ∈ M} and M{a} := {α ∈ M : aα =
0M} are also submodules of M (verify).
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Let α1, . . . , αn be elements of M . In general, the subgroup 〈α1, . . . , αn〉
will not be a submodule of M . Instead, let us consider the set 〈α1, . . . , αn〉R,
consisting of all R-linear combinations of α1, . . . , αn, with coefficients
taken from R:

〈α1, . . . , αn〉R := {a1α1 + · · ·+ anαn : a1, . . . , an ∈ R}.

It is not hard to see (verify) that 〈α1, . . . , αn〉R is a submodule of M con-
taining α1, . . . , αn; it is called the submodule spanned or generated by
α1, . . . , αn. Moreover, it is easy to see (verify) that any submodule contain-
ing α1, . . . , αn must contain 〈α1, . . . , αn〉R. As a matter of definition, we
allow n = 0, in which case, the spanned submodule is {0M}.

If N1 and N2 are submodules of M , then N1 + N2 and N1 ∩ N2 are not
only subgroups of M , they are also submodules of M (verify).

Example 14.9. For integer ` ≥ 0, define R[X]<` to be the set of polynomials
of degree less than `. The reader may verify that R[X]<` is a submodule of
the R-module R[X]. If ` = 0, then this submodule is the trivial submodule
{0R}. 2

Example 14.10. Let G be an abelian group. As in Example 14.6, we can
view G as a Z-module in a natural way. Subgroups of G are just the same
thing as submodules of G, and for a1, . . . , an ∈ G, the subgroup 〈a1, . . . , an〉
is the same as the submodule 〈a1, . . . , an〉Z. 2

Example 14.11. Any ring R can be viewed as an R-module in the obvious
way, with addition and scalar multiplication defined in terms of the addition
and multiplication operations of R. With respect to this module structure,
ideals of R are just the same thing as submodules of R, and for a1, . . . , an ∈
R, the ideal (a1, . . . , an) is the same as the submodule 〈a1, . . . , an〉R. 2

Example 14.12. Let α1, . . . , αn and β1, . . . , βm be elements of an R-
module. Assume that each αi can be expressed as an R-linear combination
of β1, . . . , βm. Then the submodule spanned by α1, . . . , αn is contained in
the submodule spanned by β1, . . . , βm.

One can see this in a couple of different ways. First, the assumption that
each αi can be expressed as an R-linear combination of β1, . . . , βm means
that the submodule 〈β1, . . . , βm〉R contains the elements α1, . . . , αn, and
so by the general properties sketched above, this submodule must contain
〈α1, . . . , αn〉R.
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One can also see this via an explicit calculation. Suppose that

αi =
m∑

j=1

cijβj (i = 1, . . . , n),

where the cij are elements of R. Then for any element γ in the submodule
spanned by α1, . . . , αn, there exist a1, . . . , an ∈ R with

γ =
n∑

i=1

aiαi =
n∑

i=1

ai

m∑
j=1

cijβj =
m∑

j=1

( n∑
i=1

aicij

)
βj ,

and hence γ is contained in the submodule spanned by β1, . . . , βm. 2

If N is a submodule of M , then in particular, it is also a subgroup of
M , and we can form the quotient group M/N in the usual way (see §8.3).
Moreover, because N is closed under scalar multiplication, we can also define
a scalar multiplication on M/N in a natural way. Namely, for a ∈ R and
α ∈M , we define

a · (α+N) := (aα) +N.

As usual, one must check that this definition is unambiguous, that is, if
α ≡ α′ (mod N), then aα ≡ aα′ (mod N). But this follows from the fact
that N is closed under scalar multiplication (verify). One can also easily
check (verify) that with scalar multiplication defined in this way, M/N is
an R-module; it is called the quotient module of M modulo N .

14.3 Module homomorphisms and isomorphisms

Again, throughout this section, R is a ring. The notion of a group homo-
morphism extends in the obvious way to R-modules.

Definition 14.4. Let M and M ′ be modules over R. An R-module ho-

momorphism from M to M ′ is a map ρ : M →M ′, such that

(i) ρ is a group homomorphism from M to M ′, and

(ii) for all a ∈ R and α ∈M , we have ρ(aα) = aρ(α).

An R-module homomorphism is also called an R-linear map. We shall
use this terminology from now on. Expanding the definition, we see that a
map ρ : M → M ′ is an R-linear map if and only if ρ(α + β) = ρ(α) + ρ(β)
and ρ(aα) = aρ(α) for all α, β ∈M and all a ∈ R.

Since an R-module homomorphism is also a group homomorphism on the
underlying additive groups, all of the statements in Theorem 8.20 apply. In
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particular, an R-linear map is injective if and only if the kernel is trivial
(i.e., contains only the zero element). However, in the case of R-module
homomorphisms, we can extend Theorem 8.20, as follows:

Theorem 14.5. Let ρ : M →M ′ be an R-linear map.

(i) For any submodule N of M , ρ(N) is a submodule of M ′.

(ii) ker(ρ) is a submodule of M .

(iii) For any submodule N ′ of M ′, ρ−1(N ′) is a submodule of M .

Proof. Exercise. 2

Theorems 8.21, 8.22, and 8.23 have natural R-module analogs:

Theorem 14.6. If ρ : M →M ′ and ρ′ : M ′ →M ′′ are R-linear maps, then
so is their composition ρ′ ◦ ρ : M →M ′′.

Proof. Exercise. 2

Theorem 14.7. Let ρi : M →Mi, for i = 1, . . . , n, be R-linear maps. Then
the map ρ : M →M1 × · · · ×Mn that sends α ∈M to (ρ1(α), . . . , ρn(α)) is
an R-linear map.

Proof. Exercise. 2

Theorem 14.8. Let ρi : Mi →M , for i = 1, . . . , n, be R-linear maps. Then
the map ρ : M1 × · · · ×Mn → M that sends (α1, . . . , αn) to ρ1(α1) + · · · +
ρn(αn) is an R-linear map.

Proof. Exercise. 2

If an R-linear map ρ : M →M ′ is bijective, then it is called an R-module
isomorphism of M with M ′. If such an R-module isomorphism ρ exists,
we say that M is isomorphic to M ′, and write M ∼= M ′. Moreover, if
M = M ′, then ρ is called an R-module automorphism on M .

Analogous to Theorem 8.24, we have:

Theorem 14.9. If ρ is a R-module isomorphism of M with M ′, then the
inverse function ρ−1 is an R-module isomorphism of M ′ with M .

Proof. Exercise. 2

Theorems 8.25, 8.26, 8.27, and 8.28 generalize immediately to R-modules:

Theorem 14.10. If N is a submodule of an R-module M , then the natural
map ρ : M → M/N given by ρ(α) = α + N is a surjective R-linear map
whose kernel is N .
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Proof. Exercise. 2

Theorem 14.11. Let ρ be an R-linear map from M into M ′. Then the map
ρ̄ : M/ ker(ρ)→ img(ρ) that sends the coset α+ ker(ρ) for α ∈M to ρ(α) is
unambiguously defined and is an R-module isomorphism of M/ ker(ρ) with
img(ρ).

Proof. Exercise. 2

Theorem 14.12. Let ρ be an R-linear map from M into M ′. Then for any
submodule N contained in ker(ρ), the map ρ̄ : M/N → img(ρ) that sends the
coset α+N for α ∈M to ρ(α) is unambiguously defined and is an R-linear
map from M/N onto img(ρ) with kernel ker(ρ)/N .

Proof. Exercise. 2

Theorem 14.13. Let M be an R-module with submodules N1, N2. Then
the map ρ : N1 ×N2 → N1 +N2 that sends (α1, α2) to α1 + α2 is a surjec-
tive R-linear map. Moreover, if N1 ∩ N2 = {0M}, then ρ is an R-module
isomorphism of N1 ×N2 with N1 +N2.

Proof. Exercise. 2

Example 14.13. Let M be an R-module, and let m be an integer. Then
the m-multiplication on M is not only a group homomorphism, but it is an
R-linear map. 2

Example 14.14. Let M be an R-module, and let a be an element of R.
The a-multiplication map on M is the map that sends α ∈M to aα ∈M .
This is an R-linear map whose image is aM , and whose kernel is M{a}. The
set of all a ∈ R for which aM = {0M} is called the R-exponent of M , and
is easily seen to be an ideal of R (verify). 2

Example 14.15. Let M be an R-module, and let α be an element of M .
Then the map ρ : R → M given by ρ(a) = aα is an R-linear map. The
image of this map is 〈α〉R. The kernel of this map is called the R-order of
α, and is easily seen to be an ideal of R (verify). 2

Example 14.16. Consider again the R-module R[X]/(f) discussed in Ex-
ample 14.3, where f is monic of degree `. As an R-module, R[X]/(f) is
isomorphic to R[X]<` (see Example 14.9). Indeed, based on the observations
in Example 9.34, the map ρ : R[X]<` → R[X]/(f) that sends a polynomial
g ∈ R[X] of degree less than ` to [g]f ∈ R[X]/(f) is an isomorphism of R[X]<`

with R[X]/(f). Furthermore, R[X]<` is isomorphic as an R-module to R×`.
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Indeed, the map ρ′ : R[X]<` → R×` that sends g =
∑`−1

i=0 giXi ∈ R[X]<` to
(g0, . . . , g`−1) ∈ R×` is an isomorphism of R[X]<` with R×`. 2

Example 14.17. Let E and E′ be ring extensions of the ring R. As we
saw in Example 14.4, E and E′ may be viewed as R-modules in a natural
way. Suppose that ρ : E → E′ is a ring homomorphism whose restriction to
R is the identity map (i.e., ρ(a) = a for all a ∈ R). Then ρ is an R-linear
map. Indeed, for any a ∈ R and α, β ∈ E, we have ρ(α+ β) = ρ(α) + ρ(β)
and ρ(aα) = ρ(a)ρ(α) = aρ(α). 2

14.4 Linear independence and bases

Throughout this section, R denotes a ring.

Definition 14.14. We say that an R-module M is finitely generated

(over R) if it is spanned by a finite number of elements, which is to say
that M = 〈α1, . . . , αn〉R for some α1, . . . , αn ∈M .

We say that a collection of elements α1, . . . , αn in M is linearly de-

pendent (over R) if there exist a1, . . . , an ∈ R, not all zero, such that
a1α1 + · · · anαn = 0M ; otherwise, we say that α1, . . . , αn are linearly in-

dependent (over R).
We say that a collection α1, . . . , αn of elements in M is a basis for M

(over R) if it is linearly independent and spans M .

Note that in the above definition, the collection of elements α1, . . . , αn

may contain duplicates; the collection may also be empty (i.e., n = 0),
in which case, by definition, it is a basis for the trivial submodule {0M}.
Note that the ordering of the elements α1, . . . , αn makes no difference in
any aspect of the definition.

Example 14.18. Consider the R-module R×n. Define α1, . . . , αn ∈ R×n

as follows:

α1 := (1, 0, . . . , 0), α2 := (0, 1, 0, . . . , 0), . . . , αn := (0, . . . , 0, 1);

that is, αi has a 1 in position i and is zero everywhere else. It is easy to
see that α1, . . . , αn form a basis for R×n. Indeed, for any a1, . . . , an ∈ R,
we have a1α1 + · · ·+ anαn = (a1, . . . , an), from which it is clear that the αi

span R×n and are linearly independent. The vectors α1, . . . , αn form what
is called the standard basis for R×n. 2

Example 14.19. Consider the Z-module Z×3. In addition to the standard
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basis

(1, 0, 0), (0, 1, 0), (0, 0, 1),

the vectors

α1 := (1, 1, 1), α2 := (0, 1, 0), α3 := (2, 0, 1)

also form a basis. To see this, first observe that for a1, a2, a3, b1, b2, b3 ∈ Z,
we have

(b1, b2, b3) = a1α1 + a2α2 + a3α3

if and only if

b1 = a1 + 2a3, b2 = a1 + a2, and b3 = a1 + a3. (14.1)

If (14.1) holds with b1 = b2 = b3 = 0, then subtracting the equation a1+a3 =
0 from a1 + 2a3 = 0, we see that a3 = 0, from which it easily follows that
a1 = a2 = 0. This shows that the vectors are linearly independent. To show
that they span Z×3, the reader may verify that for any given b1, b2, b3 ∈ Z,
the values

a1 := −b1 + 2b3, a2 := b1 + b2 − 2b3, a3 := b1 − b3

satisfy (14.1).
The vectors

(1, 1, 1), (0, 1, 0), (1, 0, 1)

do not form a basis, as they are linearly dependent: the third vector is equal
to the first minus the second.

The vectors (1, 0, 12), (0, 1, 30), (0, 0, 18) are linearly independent, but do
not span Z×3 — the last component of any Z-linear combination of these
vectors must be divisible by gcd(12, 30, 18) = 6. These vectors do, however,
form a basis for the Q-module Q×3. 2

Example 14.20. If R is non-trivial, the ring of polynomials R[X] is not
finitely generated as an R-module, since any finite set of polynomials spans
only polynomials of some bounded degree. 2

Example 14.21. Consider the submodule R[X]<` of R[X], where ` ≥ 0. If
` = 0, then R[X]<` is trivial; otherwise, 1, X, . . . , X`−1 form a basis. 2

Example 14.22. Consider again the ring E = R[X]/(f), where f ∈ R[X] is
monic of degree ` ≥ 0. If f = 1, then E is trivial; otherwise, 1, η, η2, . . . , η`−1,
where η := [X]f ∈ E, form a basis for E over R. 2

The next theorem highlights a critical property of bases:
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Theorem 14.15. If α1, . . . , αn form a basis for M , then the map ρ : R×n →
M that sends (a1, . . . , an) ∈ R×n to a1α1 + · · ·+ anαn ∈M is an R-module
isomorphism of R×n with M . In particular, every element of M can be
expressed in a unique way as a1α1 + · · ·+ anαn, for a1, . . . , an ∈ R.

Proof. To show this, one has to show (1) that ρ is an R-linear map, which
follows immediately from the definitions, (2) that ρ is injective, which follows
immediately from the linear independence of α1, . . . , αn, and (3) that ρ is
surjective, which follows immediately from the fact that α1, . . . , αn span M .
2

The following theorems develop important connections among the notions
of spanning, linear independence, and linear maps.

Theorem 14.16. Suppose that α1, . . . , αn span an R-module M and that
ρ : M →M ′ is an R-linear map.

(i) ρ is surjective if and only if ρ(α1), . . . , ρ(αn) span M ′.
(ii) If ρ(α1), . . . , ρ(αn) are linearly independent, then ρ is injective.

Proof. Since the αi span M , every element of M can be expressed as
∑

i aiαi,
where the ai are in R. It follows that the image of ρ consists of all elements
of M ′ of the form ρ(

∑
i aiαi) =

∑
i aiρ(αi). That is, the image of ρ is the

submodule of M ′ spanned by ρ(α1), . . . , ρ(αn), which implies (i).
For (ii), suppose that ρ is not injective. Then ρ(α) = 0M ′ for some

α 6= 0M , and since the αi span M , we can write α =
∑

i aiαi, where the ai

are in R. Since α is non-zero, some of the ai must be non-zero. So we have
0M ′ = ρ(

∑
i aiαi) =

∑
i aiρ(αi), and hence ρ(α1), . . . , ρ(αn) are linearly

dependent. 2

Theorem 14.17. Suppose ρ : M → M ′ is an injective R-linear map and
that α1, . . . , αn ∈ M are linearly independent. Then ρ(α1), . . . , ρ(αn) are
linearly independent.

Proof. Suppose that 0M ′ =
∑

i aiρ(αi) = ρ(
∑

i aiαi). Then, as ker(ρ) =
{0M}, we must have

∑
i aiαi = 0M , and as the αi are linearly independent,

all the ai must be zero. 2

Theorem 14.18. Let α1, . . . , αn be a basis for an R-module M , and let
ρ : M →M ′ be an R-linear map.

(i) ρ is surjective if and only if ρ(α1), . . . , ρ(αn) span M ′.
(ii) ρ is injective if and only if ρ(α1), . . . , ρ(αn) are linearly independent.
(iii) ρ is an isomorphism if and only if ρ(α1), . . . , ρ(αn) form a basis for

M ′.
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Proof. (i) follows immediately from part (i) of Theorem 14.16. (ii) follows
from part (ii) of Theorem 14.16 and Theorem 14.17. (iii) follows from (i)
and (ii). 2

Exercise 14.1. Show that if a finite collection of elements of an R-module
is linearly independent, then any sub-collection is also linearly independent.

Exercise 14.2. Assume R is non-trivial. Show that if a finite collection of
elements of an R-module contains the zero element, or contains two identical
elements, then it is not linearly independent.

Exercise 14.3. Assume R is trivial and that M is an R-module (which
must also be trivial). Show that any finite collection of zero or more copies
of 0M is a basis for M .

Exercise 14.4. Let ρ : M → M ′ be an R-linear map. Show that if
α1, . . . , αn ∈ M are linearly dependent, then ρ(α1), . . . , ρ(αn) ∈ M ′ are
also linearly dependent.

14.5 Vector spaces and dimension

Throughout this section, F denotes a field.
A module over a field is also called a vector space. In particular, an

F -module is called an F -vector space, or a vector space over F .
For vector spaces over F , one typically uses the terms subspace and

quotient space, instead of (respectively) submodule and quotient module;
likewise, one usually uses the terms F -vector space homomorphism,
isomorphism and automorphism, as appropriate.

Throughout the rest of this section, V denotes a vector space over F .
We now develop the basic theory of dimension for finitely generated vector

spaces. The following two theorems provide the keys to this theory.

Theorem 14.19. If V is finitely generated, then any finite set of vectors
that spans V contains a subset that is a basis.

Proof. We give an “algorithmic” proof. Let α1, . . . , αn be a given set of
vectors that spans V . Let S0 be the empty set, and for i = 1, . . . , n, do
the following: if αi does not belong to the subspace spanned by Si−1, set
Si := Si−1∪{αi}, and otherwise, set Si := Si−1. We claim that Sn is a basis
for V .

First, we show that Sn spans V . To do this, first note that for i = 1, . . . , n,
if αi is not in Sn, then by definition, αi is a linear combination of vectors in
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Si−1 ⊆ Sn. In any case, each αi is a linear combination of the vectors in Sn.
Since any element β of V is a linear combination of α1, . . . , αn, and each
αi is a linear combination of elements of Sn, it follows (see Example 14.12)
that β is a linear combination of elements of Sn.

Second, we show that Sn is linearly independent. Suppose it were not.
Then we could express 0V as a non-trivial linear combination of elements in
Sn. Let us write this as

0V = a1α1 + a2α2 + · · ·+ anαn,

where the only non-zero coefficients ai are those with αi ∈ Sn. If j is the
highest index with aj 6= 0F , then by definition αj ∈ Sn. However, we see
that αj is in fact in the span of Sj−1; indeed,

αj = (−a−1
j a1)α1 + · · ·+ (−a−1

j aj−1)αj−1,

and by definition, the only terms with non-zero coefficients are those corre-
sponding to the vectors in Sj−1. This means that we would not have added
αj to Sj at step j, which means αj is not in Sn, a contradiction. 2

Theorem 14.20. If V has a basis of size n, then any collection of n + 1
elements of V is linearly dependent.

Proof. Let α1, . . . , αn be a basis, and let β1, . . . , βn+1 be any collection of
n+ 1 vectors. We wish to show that β1, . . . , βn+1 are linearly dependent.

Since the αi span V , we know that β1 is a linear combination of the αi, say,
β1 = a1α1+· · · anαn. If all the ai were zero, then we would have β1 = 0V , and
so trivially, β1, . . . , βn+1 would be linearly dependent (see Exercise 14.2). So
assume that not all ai are zero, and for convenience, let us say that a1 6= 0F .
It follows that α1 is a linear combination of β1, α2, . . . , αn; indeed,

α1 = a−1
1 β1 + (−a−1

1 a2)α2 + · · ·+ (−a−1
1 an)αn.

It follows that β1, α2, . . . , αn span V (see Example 14.12).
Next, consider β2. This is a linear combination of β1, α2, . . . , αn, and

we may assume that in this linear combination, the coefficient of one of
α2, . . . , αn is non-zero (otherwise, we find a linear dependence among the
βj), and for convenience, let us say that the coefficient of α2 is non-zero. As
in the previous paragraph, it follows that β1, β2, α3, . . . , αn span V .

Continuing in this way, we find that β1, . . . , βn are either linearly depen-
dent or they span V . In the latter case, we find that βn+1 is a linear com-
bination of β1, . . . , βn, and hence, the vectors β1, . . . , βn, βn+1 are linearly
dependent. 2
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We stress that the proofs of Theorems 14.19 and 14.20 both made critical
use of the assumption that F is a field. An important corollary of Theo-
rem 14.20 is the following:

Theorem 14.21. If V is finitely generated, then any two bases have the
same size.

Proof. If one basis had more elements than another, then Theorem 14.20
would imply that the first basis was linearly dependent, which contradicts
the definition of a basis. 2

Theorem 14.21 allows us to make the following definition:

Definition 14.22. If V is finitely generated, the common size of any basis
is called the dimension of V , and is denoted dimF (V ).

Note that from the definitions, we have dimF (V ) = 0 if and only if V is
the trivial vector space (i.e., V = {0V }). We also note that one often refers
to a finitely generated vector space as a finite dimensional vector space.
We shall give preference to this terminology from now on.

To summarize the main results in this section up to this point: if V is finite
dimensional, it has a basis, and any two bases have the same size, which is
called the dimension of V . The next theorem is simple consequences of these
results.

Theorem 14.23. Suppose that V is of finite dimension n, and let
α1, . . . , αn ∈ V . The following are equivalent:

(i) α1, . . . , αn are linearly independent.

(ii) α1, . . . , αn span V .

(iii) α1, . . . , αn form a basis for V .

Proof. Let W be the subspace spanned by α1, . . . , αn.
First, let us show that (i) implies (ii). Suppose α1, . . . , αn are linearly

independent. Also, by way of contradiction, suppose that W ( V . Choose
β ∈ V \ W . Then it follows that α1, . . . , αn, β are linearly independent;
indeed, if we had a relation 0V = a1α1 + · · ·+anαn + bβ, then we must have
b = 0F (otherwise, β ∈ W ), and by the linear independence of α1, . . . , αn,
all the ai must be zero as well. But then we have a set of n + 1 linearly
independent vectors in V , which is impossible by Theorem 14.20.

Second, let us prove that (ii) implies (i). Let us assume that α1, . . . , αn are
linearly dependent, and prove that W ( V . By Theorem 14.19, we can find a
basis for W among the αi, and since the αi are linearly dependent, this basis
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must contain strictly fewer than n elements. Hence, dimF (W ) < dimF (V ),
and therefore, W ( V .

The theorem now follows from the above arguments, and the fact that,
by definition, (iii) holds if and only if both (i) and (ii) hold. 2

We next examine the dimension of subspaces of finite dimensional vector
spaces.

Theorem 14.24. If V is finite dimensional, and W is a subspace of V ,
then W is also finite dimensional, and dimF (W ) ≤ dimF (V ). Moreover,
dimF (W ) = dimF (V ) if and only if W = V .

Proof. To see this, suppose dimF (V ) = n, and assume that W is non-trivial.
We shall construct a basis α1, . . . , αm for W , where m ≤ n. We can take α1

to be any non-zero vector in W , α2 to be any vector in W not in the subspace
spanned by α1, and so on. More generally, at stage i = 1, 2, . . . , we take αi to
be any element of W not in the subspace spanned by α1, . . . , αi−1. It is easy
to see that at each stage i, the vectors α1, . . . , αi are linearly independent:
if we had a relation a1α1 + · · · ajαj = 0V , where j ≤ i and aj 6= 0F , this
would imply that αj lies in the subspace generated by α1, . . . , αj−1, which
contradicts the definition of how αj was selected. Because of Theorem 14.20,
this process must halt at some stage m ≤ n, and since the process does halt,
it must be the case that α1, . . . , αm span W .

That proves that W is finite dimensional with dimF (W ) ≤ dimF (V ). It
remains to show that these dimensions are equal if and only if W = V . Now,
if W = V , then clearly dimF (W ) = dimF (V ). Conversely, if dimF (W ) =
dimF (V ), then by Theorem 14.23, any basis for W must already span V . 2

Theorem 14.25. If V is finite dimensional, and W is a subspace of V ,
then the quotient space V/W is also finite dimensional, and

dimF (V/W ) = dimF (V )− dimF (W ).

Proof. Suppose that S is a finite set of vectors that spans V . Then {α +
W : α ∈ S} is a finite set of vectors that spans V/W . It follows from
Theorem 14.19 that V/W has a basis, say, α1 + W, . . . , α` + W . Suppose
that β1, . . . , βm is a basis for W . The theorem will follow immediately from
the following:

Claim. The vectors

α1, . . . , α`, β1, . . . , βm (14.2)

form a basis for V .
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To see that these vectors span V , consider any element γ of V . Then since
α1 + W, . . . , α` + W span V/W , we have γ ≡

∑
i aiαi (mod W ) for some

a1, . . . , a` ∈ F . If we set β := γ −
∑

i aiαi ∈ W , then since β1, . . . , βm span
W , we have β =

∑
j bjβj for some b1, . . . , bm ∈ F , and hence γ =

∑
i aiαi +∑

j bjβj . That proves that the vectors (14.2) span V . To prove they are
linearly independent, suppose we have a relation of the form

∑
i aiαi +∑

j bjβj = 0V , where a1, . . . , a` ∈ F and b1, . . . , bm ∈ F . If any of the ai

were non-zero, this would contradict the assumption that α1+W, . . . , α`+W
are linearly independent. So assume that all the ai are zero. If any of the
bj were non-zero, this would contradict the assumption that β1, . . . , βm are
linearly independent. Thus, all the ai and all the bj must be zero, which
proves that the vectors (14.2) are linearly independent. That proves the
claim. 2

Theorem 14.26. If V is of finite dimension, then any linearly independent
set of elements of V can be extended to form a basis for V .

Proof. This is actually implicit in the proof of the previous theorem. Let
β1, . . . , βm ∈ V be linearly independent. Let W be the subspace of V
spanned by β1, . . . , βm, so that β1, . . . , βm form a basis for W . As in the
proof of the previous theorem, we can choose α1, . . . , α` ∈ V such that
α1 +W, . . . , α` +W form a basis for the quotient space V/W , so that

α1, . . . , α`, β1, . . . , βm

form a basis for V . 2

Example 14.23. Suppose that F is finite, say |F | = q, and that V is finite
dimensional, say dimF (V ) = n. Then clearly |V | = qn. If W is a subspace
with dimF (W ) = m, then |W | = qm, and by Theorem 14.25, dimF (V/W ) =
n−m, and hence |V/W | = qn−m. Just viewing V and W as additive groups,
we know that the index of W in V is [V : W ] = |V/W | = |V |/|W | = qn−m,
which agrees with the above calculations. 2

We next consider the relation between the notion of dimension and linear
maps.

Theorem 14.27. If V is of finite dimension n, and V is isomorphic to V ′,
then V ′ is also of finite dimension n.

Proof. If α1, . . . , αn is a basis for V , then by Theorem 14.18, ρ(α1), . . . , ρ(αn)
is a basis for V ′. 2
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Theorem 14.28. If ρ : V → V ′ is an F -linear map, and if V and V ′ are
finite dimensional with dimF (V ) = dimF (V ′), then we have:

ρ is injective if and only if ρ is surjective.

Proof. Let α1, . . . , αn be a basis for V . By Theorem 14.18, we know that
ρ is injective if and only if ρ(α1), . . . , ρ(αn) are linearly independent, and
that ρ is surjective if and only if ρ(α1), . . . , ρ(αn) span V ′. Moreover, by
Theorem 14.23, we know that the vectors ρ(α1), . . . , ρ(αn) are linearly inde-
pendent if and only if they span V ′. The theorem now follows immediately.
2

This last theorem turns out to be extremely useful in a number of set-
tings. Generally, of course, if we have a function f : A→ B, injectivity does
not imply surjectivity, nor does surjectivity imply injectivity. If A and B

are finite sets of equal size, then these implications do indeed hold. Theo-
rem 14.28 gives us another important setting where these implications hold,
with finite dimensionality playing the role corresponding to finiteness.

Theorem 14.28 may be generalized as follows:

Theorem 14.29. If V is finite dimensional, and ρ : V → V ′ is an F -linear
map, then img(ρ) is a finite dimensional vector space, and

dimF (V ) = dimF (img(ρ)) + dimF (ker(ρ)).

Proof. As the reader may verify, this follows immediately from Theo-
rem 14.25, together with Theorems 14.27 and 14.11. 2

Intuitively, one way to think of Theorem 14.29 is as a “law of conservation”
for dimension: any “dimensionality” going into ρ that is not “lost” to the
kernel of ρ must show up in the image of ρ.

Exercise 14.5. Show that if V1, . . . , Vn are finite dimensional vector spaces,
then V1 × · · · × Vn has dimension

∑n
i=1 dimF (Vi).

Exercise 14.6. Show that if V is a finite dimensional vector space with
subspaces W1 and W2, such that W1 +W2 = V and W1 ∩W2 = {0V }, then
dimF (V ) = dimF (W1) + dimF (W2).

Exercise 14.7. The theory of dimension for finitely generated vector spaces
is quite elegant and powerful. There is a theory of dimension (of sorts) for
modules over an arbitrary, non-trivial ring R, but it is much more awkward
and limited. This exercise develops a proof of one aspect of this theory: if
an R-module M has a basis at all, then any two bases have the same size.
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To prove this, we need the fact that any non-trivial ring has a maximal ideal
(this was proved in Exercise 9.30 for countable rings). Let n,m be positive
integers, let α1, . . . , αm be elements of R×n, and let I be an ideal of R.

(a) Show that if α1, . . . , αm span R×n, then every element of I×n can be
expressed as a1α1 + · · · amαm, where a1, . . . , am belong to I.

(b) Show that if m > n and I is a maximal ideal, then there exist
a1, . . . , am ∈ R, not all in I, such that a1α1 + · · · amαm ∈ I×n.

(c) From (a) and (b), deduce that if m > n, then α1, . . . , αm cannot be
a basis for R×n.

(d) From (c), conclude that any two bases for a given R-module M must
have the same size.


