14

Modules and vector spaces

In this chapter, we introduce the basic definitions and results concerning modules over a ring R and vector spaces over a field F. The reader may have seen some of these notions before, but perhaps only in the context of vector spaces over a specific field, such as the real or complex numbers, and not in the context of, say, finite fields like \mathbb{Z}_{p}.

14.1 Definitions, basic properties, and examples

Throughout this section, R denotes a ring.
Definition 14.1. An R-module is an abelian group M, which we shall write using additive notation, together with a scalar multiplication operation that maps $a \in R$ and $\alpha \in M$ to an element $a \alpha \in M$, such that the following properties are satisfied for all $a, b \in R$ and $\alpha, \beta \in M$:
(i) $a(b \alpha)=(a b) \alpha$,
(ii) $(a+b) \alpha=a \alpha+b \alpha$,
(iii) $a(\alpha+\beta)=a \alpha+a \beta$,
(iv) $1_{R} \alpha=\alpha$.

One may also call an R-module M a module over R. Elements of R are often referred to as scalars, and elements of M may be called vectors.

Note that for an R-module M, for fixed $a \in R$, the map that sends $\alpha \in M$ to $a \alpha \in M$ is a group homomorphism with respect to the additive group operation of M; likewise, for fixed $\alpha \in M$, the map that sends $a \in R$ to $a \alpha \in M$ is a group homomorphism from the additive group of R into the additive group of M.

The following theorem summarizes a few basic facts which follow directly
from the observations in the previous paragraph, and basic facts about group homomorphisms (see Theorem 8.20):

Theorem 14.2. If M is a module over R, then for all $a \in R, \alpha \in M$, and $m \in \mathbb{Z}$, we have:
(i) $0_{R} \alpha=0_{M}$,
(ii) $a 0_{M}=0_{M}$,
(iii) $(-a) \alpha=-(a \alpha)=a(-\alpha)$,
(iv) $(m a) \alpha=m(a \alpha)=a(m \alpha)$.

Proof. Exercise.
The definition of a module includes the trivial module, consisting of just the zero element 0_{M}. If R is the trivial ring, then any R-module is trivial, since for all $\alpha \in M$, we have $\alpha=1_{R} \alpha=0_{R} \alpha=0_{M}$.

Example 14.1. A simple but extremely important example of an R-module is the set $R^{\times n}$ of n-tuples of elements of R, where addition and scalar multiplication are defined component-wise-that is, for $\alpha=\left(a_{1}, \ldots, a_{n}\right) \in R^{\times n}$, $\beta=\left(b_{1}, \ldots, a_{n}\right) \in R^{\times n}$, and $a \in R$, we have

$$
\alpha+\beta=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right) \text { and } a \alpha=\left(a a_{1}, \ldots, a a_{n}\right)
$$

Example 14.2. The ring of polynomials $R[\mathrm{X}]$ over R forms an R-module in the natural way, with addition and scalar multiplication defined in terms of the addition and multiplication operations of the polynomial ring.

Example 14.3. As in Example 9.34, let f be a monic polynomial over R of degree $\ell \geq 0$, and consider the quotient ring $E:=R[\mathrm{X}] /(f)$. Then E is a module over R, with addition defined in terms of the addition operation of R, and scalar multiplication defined by $a[g]_{f}:=[a g]_{f}$, for $a \in R$ and $g \in R[\mathrm{X}]$. If $f=1$, then E is trivial.

Example 14.4. If E is any ring containing R as a subring (i.e., E is an extension ring of R), then E is a module over R, with addition and scalar multiplication defined in terms of the addition and multiplication operations of E.

Example 14.5. If M_{1}, \ldots, M_{n} are R-modules, then so is the direct product $M_{1} \times \cdots \times M_{n}$, where addition and scalar product are defined componentwise.

Example 14.6. Any abelian group G, written additively, can be viewed as
a \mathbb{Z}-module, with scalar multiplication defined in terms of the usual integer multiplication map (see parts (vi)-(viii) of Theorem 8.3).

Example 14.7. Let G be any group, written additively, whose exponent divides n. Then we may define a scalar multiplication that maps $[m]_{n} \in \mathbb{Z}_{n}$ and $\alpha \in G$ to $m \alpha$. That this map is unambiguously defined follows from the fact that G has exponent dividing n, so that if $m \equiv m^{\prime}(\bmod n)$, we have $m \alpha-m^{\prime} \alpha=\left(m-m^{\prime}\right) \alpha=0_{G}$, since $n \mid\left(m-m^{\prime}\right)$. It is easy to check that this scalar multiplication operation indeed makes G into a \mathbb{Z}_{n}-module.

Example 14.8. Of course, viewing a group as a module does not depend on whether or not we happen to use additive notation for the group operation. If we specialize the previous example to the group $G=\mathbb{Z}_{p}^{*}$, where p is prime, then we may view G as a \mathbb{Z}_{p-1}-module. However, since the group operation itself is written multiplicatively, the "scalar product" of $[m]_{p-1} \in \mathbb{Z}_{p-1}$ and $\alpha \in \mathbb{Z}_{p}^{*}$ is the power α^{m}.

14.2 Submodules and quotient modules

Again, throughout this section, R denotes a ring. The notions of subgroups and quotient groups extend in the obvious way to R-modules.

Definition 14.3. Let M be an R-module. A subset N is a submodule of M if
(i) N is a subgroup of the additive group M, and
(ii) N is closed under scalar multiplication; that is, for all $a \in R$ and $\alpha \in N$, we have $a \alpha \in N$.

It is easy to see that a submodule N of an R-module M is also an R module in its own right, with addition and scalar multiplication operations inherited from M.

Expanding the above definition, we see that a subset N of M is a submodule if and only if for all $a \in R$ and all $\alpha, \beta \in N$, we have

$$
\alpha+\beta \in N, \quad-\alpha \in N, \quad \text { and } \quad a \alpha \in N
$$

Observe that the condition $-\alpha \in N$ is redundant, as it is implied by the condition $a \alpha \in N$ with $a=-1_{R}$.

For $m \in \mathbb{Z}$, it is easy to see (verify) that not only are $m M$ and $M\{m\}$ subgroups of M (see Theorems 8.6 and 8.7), they are also submodules of M. Moreover, for $a \in R, a M:=\{a \alpha: \alpha \in M\}$ and $M\{a\}:=\{\alpha \in M: a \alpha=$ $\left.0_{M}\right\}$ are also submodules of M (verify).

Let $\alpha_{1}, \ldots, \alpha_{n}$ be elements of M. In general, the subgroup $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ will not be a submodule of M. Instead, let us consider the set $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle_{R}$, consisting of all R-linear combinations of $\alpha_{1}, \ldots, \alpha_{n}$, with coefficients taken from R :

$$
\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle_{R}:=\left\{a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n}: a_{1}, \ldots, a_{n} \in R\right\}
$$

It is not hard to see (verify) that $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle_{R}$ is a submodule of M containing $\alpha_{1}, \ldots, \alpha_{n}$; it is called the submodule spanned or generated by $\alpha_{1}, \ldots, \alpha_{n}$. Moreover, it is easy to see (verify) that any submodule containing $\alpha_{1}, \ldots, \alpha_{n}$ must contain $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle_{R}$. As a matter of definition, we allow $n=0$, in which case, the spanned submodule is $\left\{0_{M}\right\}$.

If N_{1} and N_{2} are submodules of M, then $N_{1}+N_{2}$ and $N_{1} \cap N_{2}$ are not only subgroups of M, they are also submodules of M (verify).

Example 14.9. For integer $\ell \geq 0$, define $R[\mathrm{X}]_{<\ell}$ to be the set of polynomials of degree less than ℓ. The reader may verify that $R[\mathrm{X}]_{<\ell}$ is a submodule of the R-module $R[\mathrm{x}]$. If $\ell=0$, then this submodule is the trivial submodule $\left\{0_{R}\right\}$ 。

Example 14.10. Let G be an abelian group. As in Example 14.6, we can view G as a \mathbb{Z}-module in a natural way. Subgroups of G are just the same thing as submodules of G, and for $a_{1}, \ldots, a_{n} \in G$, the subgroup $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is the same as the submodule $\left\langle a_{1}, \ldots, a_{n}\right\rangle_{\mathbb{Z}}$.

Example 14.11. Any ring R can be viewed as an R-module in the obvious way, with addition and scalar multiplication defined in terms of the addition and multiplication operations of R. With respect to this module structure, ideals of R are just the same thing as submodules of R, and for $a_{1}, \ldots, a_{n} \in$ R, the ideal $\left(a_{1}, \ldots, a_{n}\right)$ is the same as the submodule $\left\langle a_{1}, \ldots, a_{n}\right\rangle_{R}$.

Example 14.12. Let $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{m}$ be elements of an R module. Assume that each α_{i} can be expressed as an R-linear combination of $\beta_{1}, \ldots, \beta_{m}$. Then the submodule spanned by $\alpha_{1}, \ldots, \alpha_{n}$ is contained in the submodule spanned by $\beta_{1}, \ldots, \beta_{m}$.

One can see this in a couple of different ways. First, the assumption that each α_{i} can be expressed as an R-linear combination of $\beta_{1}, \ldots, \beta_{m}$ means that the submodule $\left\langle\beta_{1}, \ldots, \beta_{m}\right\rangle_{R}$ contains the elements $\alpha_{1}, \ldots, \alpha_{n}$, and so by the general properties sketched above, this submodule must contain $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle_{R}$.

One can also see this via an explicit calculation. Suppose that

$$
\alpha_{i}=\sum_{j=1}^{m} c_{i j} \beta_{j} \quad(i=1, \ldots, n)
$$

where the $c_{i j}$ are elements of R. Then for any element γ in the submodule spanned by $\alpha_{1}, \ldots, \alpha_{n}$, there exist $a_{1}, \ldots, a_{n} \in R$ with

$$
\gamma=\sum_{i=1}^{n} a_{i} \alpha_{i}=\sum_{i=1}^{n} a_{i} \sum_{j=1}^{m} c_{i j} \beta_{j}=\sum_{j=1}^{m}\left(\sum_{i=1}^{n} a_{i} c_{i j}\right) \beta_{j},
$$

and hence γ is contained in the submodule spanned by $\beta_{1}, \ldots, \beta_{m}$.
If N is a submodule of M, then in particular, it is also a subgroup of M, and we can form the quotient group M / N in the usual way (see $\S 8.3$). Moreover, because N is closed under scalar multiplication, we can also define a scalar multiplication on M / N in a natural way. Namely, for $a \in R$ and $\alpha \in M$, we define

$$
a \cdot(\alpha+N):=(a \alpha)+N
$$

As usual, one must check that this definition is unambiguous, that is, if $\alpha \equiv \alpha^{\prime}(\bmod N)$, then $a \alpha \equiv a \alpha^{\prime}(\bmod N)$. But this follows from the fact that N is closed under scalar multiplication (verify). One can also easily check (verify) that with scalar multiplication defined in this way, M / N is an R-module; it is called the quotient module of M modulo N.

14.3 Module homomorphisms and isomorphisms

Again, throughout this section, R is a ring. The notion of a group homomorphism extends in the obvious way to R-modules.

Definition 14.4. Let M and M^{\prime} be modules over R. An R-module homomorphism from M to M^{\prime} is a map $\rho: M \rightarrow M^{\prime}$, such that
(i) ρ is a group homomorphism from M to M^{\prime}, and
(ii) for all $a \in R$ and $\alpha \in M$, we have $\rho(a \alpha)=a \rho(\alpha)$.

An R-module homomorphism is also called an R-linear map. We shall use this terminology from now on. Expanding the definition, we see that a $\operatorname{map} \rho: M \rightarrow M^{\prime}$ is an R-linear map if and only if $\rho(\alpha+\beta)=\rho(\alpha)+\rho(\beta)$ and $\rho(a \alpha)=a \rho(\alpha)$ for all $\alpha, \beta \in M$ and all $a \in R$.

Since an R-module homomorphism is also a group homomorphism on the underlying additive groups, all of the statements in Theorem 8.20 apply. In
particular, an R-linear map is injective if and only if the kernel is trivial (i.e., contains only the zero element). However, in the case of R-module homomorphisms, we can extend Theorem 8.20, as follows:

Theorem 14.5. Let $\rho: M \rightarrow M^{\prime}$ be an R-linear map.
(i) For any submodule N of $M, \rho(N)$ is a submodule of M^{\prime}.
(ii) $\operatorname{ker}(\rho)$ is a submodule of M.
(iii) For any submodule N^{\prime} of $M^{\prime}, \rho^{-1}\left(N^{\prime}\right)$ is a submodule of M.

Proof. Exercise.
Theorems 8.21, 8.22, and 8.23 have natural R-module analogs:
Theorem 14.6. If $\rho: M \rightarrow M^{\prime}$ and $\rho^{\prime}: M^{\prime} \rightarrow M^{\prime \prime}$ are R-linear maps, then so is their composition $\rho^{\prime} \circ \rho: M \rightarrow M^{\prime \prime}$.
Proof. Exercise.
Theorem 14.7. Let $\rho_{i}: M \rightarrow M_{i}$, for $i=1, \ldots, n$, be R-linear maps. Then the map $\rho: M \rightarrow M_{1} \times \cdots \times M_{n}$ that sends $\alpha \in M$ to $\left(\rho_{1}(\alpha), \ldots, \rho_{n}(\alpha)\right)$ is an R-linear map.

Proof. Exercise.
Theorem 14.8. Let $\rho_{i}: M_{i} \rightarrow M$, for $i=1, \ldots, n$, be R-linear maps. Then the map $\rho: M_{1} \times \cdots \times M_{n} \rightarrow M$ that sends $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ to $\rho_{1}\left(\alpha_{1}\right)+\cdots+$ $\rho_{n}\left(\alpha_{n}\right)$ is an R-linear map.

Proof. Exercise.
If an R-linear map $\rho: M \rightarrow M^{\prime}$ is bijective, then it is called an R-module isomorphism of M with M^{\prime}. If such an R-module isomorphism ρ exists, we say that M is isomorphic to M^{\prime}, and write $M \cong M^{\prime}$. Moreover, if $M=M^{\prime}$, then ρ is called an R-module automorphism on M.

Analogous to Theorem 8.24, we have:
Theorem 14.9. If ρ is a R-module isomorphism of M with M^{\prime}, then the inverse function ρ^{-1} is an R-module isomorphism of M^{\prime} with M.

Proof. Exercise.
Theorems $8.25,8.26,8.27$, and 8.28 generalize immediately to R-modules:
Theorem 14.10. If N is a submodule of an R-module M, then the natural map $\rho: M \rightarrow M / N$ given by $\rho(\alpha)=\alpha+N$ is a surjective R-linear map whose kernel is N.

Proof. Exercise.
Theorem 14.11. Let ρ be an R-linear map from M into M^{\prime}. Then the map $\bar{\rho}: M / \operatorname{ker}(\rho) \rightarrow \operatorname{img}(\rho)$ that sends the coset $\alpha+\operatorname{ker}(\rho)$ for $\alpha \in M$ to $\rho(\alpha)$ is unambiguously defined and is an R-module isomorphism of $M / \operatorname{ker}(\rho)$ with $\operatorname{img}(\rho)$.

Proof. Exercise.
Theorem 14.12. Let ρ be an R-linear map from M into M^{\prime}. Then for any submodule N contained in $\operatorname{ker}(\rho)$, the map $\bar{\rho}: M / N \rightarrow \operatorname{img}(\rho)$ that sends the coset $\alpha+N$ for $\alpha \in M$ to $\rho(\alpha)$ is unambiguously defined and is an R-linear map from M / N onto $\operatorname{img}(\rho)$ with kernel $\operatorname{ker}(\rho) / N$.

Proof. Exercise.
Theorem 14.13. Let M be an R-module with submodules N_{1}, N_{2}. Then the map $\rho: N_{1} \times N_{2} \rightarrow N_{1}+N_{2}$ that sends (α_{1}, α_{2}) to $\alpha_{1}+\alpha_{2}$ is a surjective R-linear map. Moreover, if $N_{1} \cap N_{2}=\left\{0_{M}\right\}$, then ρ is an R-module isomorphism of $N_{1} \times N_{2}$ with $N_{1}+N_{2}$.

Proof. Exercise.
Example 14.13. Let M be an R-module, and let m be an integer. Then the m-multiplication on M is not only a group homomorphism, but it is an R-linear map.

Example 14.14. Let M be an R-module, and let a be an element of R. The a-multiplication map on M is the map that sends $\alpha \in M$ to $a \alpha \in M$. This is an R-linear map whose image is $a M$, and whose kernel is $M\{a\}$. The set of all $a \in R$ for which $a M=\left\{0_{M}\right\}$ is called the R-exponent of M, and is easily seen to be an ideal of R (verify).

Example 14.15. Let M be an R-module, and let α be an element of M. Then the map $\rho: R \rightarrow M$ given by $\rho(a)=a \alpha$ is an R-linear map. The image of this map is $\langle\alpha\rangle_{R}$. The kernel of this map is called the R-order of α, and is easily seen to be an ideal of R (verify).

Example 14.16. Consider again the R-module $R[\mathrm{x}] /(f)$ discussed in Example 14.3, where f is monic of degree ℓ. As an R-module, $R[\mathrm{x}] /(f)$ is isomorphic to $R[\mathrm{X}]_{<\ell}$ (see Example 14.9). Indeed, based on the observations in Example 9.34, the map $\rho: R[\mathrm{X}]_{<\ell} \rightarrow R[\mathrm{x}] /(f)$ that sends a polynomial $g \in R[\mathrm{X}]$ of degree less than ℓ to $[g]_{f} \in R[\mathrm{X}] /(f)$ is an isomorphism of $R[\mathrm{X}]_{<\ell}$ with $R[\mathrm{x}] /(f)$. Furthermore, $R[\mathrm{x}]_{<\ell}$ is isomorphic as an R-module to $R^{\times \ell}$.

Indeed, the map $\rho^{\prime}: R[\mathrm{X}]_{<\ell} \rightarrow R^{\times \ell}$ that sends $g=\sum_{i=0}^{\ell-1} g_{i} \mathrm{X}^{i} \in R[\mathrm{X}]_{<\ell}$ to $\left(g_{0}, \ldots, g_{\ell-1}\right) \in R^{\times \ell}$ is an isomorphism of $R[\mathrm{x}]_{<\ell}$ with $R^{\times \ell}$.

Example 14.17. Let E and E^{\prime} be ring extensions of the ring R. As we saw in Example 14.4, E and E^{\prime} may be viewed as R-modules in a natural way. Suppose that $\rho: E \rightarrow E^{\prime}$ is a ring homomorphism whose restriction to R is the identity map (i.e., $\rho(a)=a$ for all $a \in R$). Then ρ is an R-linear map. Indeed, for any $a \in R$ and $\alpha, \beta \in E$, we have $\rho(\alpha+\beta)=\rho(\alpha)+\rho(\beta)$ and $\rho(a \alpha)=\rho(a) \rho(\alpha)=a \rho(\alpha)$.

14.4 Linear independence and bases

Throughout this section, R denotes a ring.
Definition 14.14. We say that an R-module M is finitely generated (over R) if it is spanned by a finite number of elements, which is to say that $M=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle_{R}$ for some $\alpha_{1}, \ldots, \alpha_{n} \in M$.

We say that a collection of elements $\alpha_{1}, \ldots, \alpha_{n}$ in M is linearly dependent (over R) if there exist $a_{1}, \ldots, a_{n} \in R$, not all zero, such that $a_{1} \alpha_{1}+\cdots a_{n} \alpha_{n}=0_{M}$; otherwise, we say that $\alpha_{1}, \ldots, \alpha_{n}$ are linearly independent (over R).

We say that a collection $\alpha_{1}, \ldots, \alpha_{n}$ of elements in M is a basis for M (over R) if it is linearly independent and spans M.
Note that in the above definition, the collection of elements $\alpha_{1}, \ldots, \alpha_{n}$ may contain duplicates; the collection may also be empty (i.e., $n=0$), in which case, by definition, it is a basis for the trivial submodule $\left\{0_{M}\right\}$. Note that the ordering of the elements $\alpha_{1}, \ldots, \alpha_{n}$ makes no difference in any aspect of the definition.

Example 14.18. Consider the R-module $R^{\times n}$. Define $\alpha_{1}, \ldots, \alpha_{n} \in R^{\times n}$ as follows:

$$
\alpha_{1}:=(1,0, \ldots, 0), \alpha_{2}:=(0,1,0, \ldots, 0), \ldots, \alpha_{n}:=(0, \ldots, 0,1) ;
$$

that is, α_{i} has a 1 in position i and is zero everywhere else. It is easy to see that $\alpha_{1}, \ldots, \alpha_{n}$ form a basis for $R^{\times n}$. Indeed, for any $a_{1}, \ldots, a_{n} \in R$, we have $a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n}=\left(a_{1}, \ldots, a_{n}\right)$, from which it is clear that the α_{i} span $R^{\times n}$ and are linearly independent. The vectors $\alpha_{1}, \ldots, \alpha_{n}$ form what is called the standard basis for $R^{\times n}$.

Example 14.19. Consider the \mathbb{Z}-module $\mathbb{Z}^{\times 3}$. In addition to the standard
basis

$$
(1,0,0),(0,1,0),(0,0,1)
$$

the vectors

$$
\alpha_{1}:=(1,1,1), \alpha_{2}:=(0,1,0), \alpha_{3}:=(2,0,1)
$$

also form a basis. To see this, first observe that for $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in \mathbb{Z}$, we have

$$
\left(b_{1}, b_{2}, b_{3}\right)=a_{1} \alpha_{1}+a_{2} \alpha_{2}+a_{3} \alpha_{3}
$$

if and only if

$$
\begin{equation*}
b_{1}=a_{1}+2 a_{3}, b_{2}=a_{1}+a_{2}, \text { and } b_{3}=a_{1}+a_{3} \tag{14.1}
\end{equation*}
$$

If (14.1) holds with $b_{1}=b_{2}=b_{3}=0$, then subtracting the equation $a_{1}+a_{3}=$ 0 from $a_{1}+2 a_{3}=0$, we see that $a_{3}=0$, from which it easily follows that $a_{1}=a_{2}=0$. This shows that the vectors are linearly independent. To show that they span $\mathbb{Z}^{\times 3}$, the reader may verify that for any given $b_{1}, b_{2}, b_{3} \in \mathbb{Z}$, the values

$$
a_{1}:=-b_{1}+2 b_{3}, a_{2}:=b_{1}+b_{2}-2 b_{3}, a_{3}:=b_{1}-b_{3}
$$

satisfy (14.1).
The vectors

$$
(1,1,1),(0,1,0),(1,0,1)
$$

do not form a basis, as they are linearly dependent: the third vector is equal to the first minus the second.

The vectors $(1,0,12),(0,1,30),(0,0,18)$ are linearly independent, but do not span $\mathbb{Z}^{\times 3}$ - the last component of any \mathbb{Z}-linear combination of these vectors must be divisible by $\operatorname{gcd}(12,30,18)=6$. These vectors do, however, form a basis for the \mathbb{Q}-module $\mathbb{Q}^{\times 3}$.

Example 14.20. If R is non-trivial, the ring of polynomials $R[\mathrm{X}]$ is not finitely generated as an R-module, since any finite set of polynomials spans only polynomials of some bounded degree.

Example 14.21. Consider the submodule $R[\mathrm{X}]_{<\ell}$ of $R[\mathrm{X}]$, where $\ell \geq 0$. If $\ell=0$, then $R[\mathrm{X}]_{<\ell}$ is trivial; otherwise, $1, \mathrm{X}, \ldots, \mathrm{X}^{\ell-1}$ form a basis.

Example 14.22. Consider again the ring $E=R[\mathrm{X}] /(f)$, where $f \in R[\mathrm{X}]$ is monic of degree $\ell \geq 0$. If $f=1$, then E is trivial; otherwise, $1, \eta, \eta^{2}, \ldots, \eta^{\ell-1}$, where $\eta:=[\mathrm{X}]_{f} \in E$, form a basis for E over R.

The next theorem highlights a critical property of bases:

Theorem 14.15. If $\alpha_{1}, \ldots, \alpha_{n}$ form a basis for M, then the map $\rho: R^{\times n} \rightarrow$ M that sends $\left(a_{1}, \ldots, a_{n}\right) \in R^{\times n}$ to $a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n} \in M$ is an R-module isomorphism of $R^{\times n}$ with M. In particular, every element of M can be expressed in a unique way as $a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n}$, for $a_{1}, \ldots, a_{n} \in R$.

Proof. To show this, one has to show (1) that ρ is an R-linear map, which follows immediately from the definitions, (2) that ρ is injective, which follows immediately from the linear independence of $\alpha_{1}, \ldots, \alpha_{n}$, and (3) that ρ is surjective, which follows immediately from the fact that $\alpha_{1}, \ldots, \alpha_{n}$ span M.

The following theorems develop important connections among the notions of spanning, linear independence, and linear maps.

Theorem 14.16. Suppose that $\alpha_{1}, \ldots, \alpha_{n}$ span an R-module M and that $\rho: M \rightarrow M^{\prime}$ is an R-linear map.
(i) ρ is surjective if and only if $\rho\left(\alpha_{1}\right), \ldots, \rho\left(\alpha_{n}\right)$ span M^{\prime}.
(ii) If $\rho\left(\alpha_{1}\right), \ldots, \rho\left(\alpha_{n}\right)$ are linearly independent, then ρ is injective.

Proof. Since the α_{i} span M, every element of M can be expressed as $\sum_{i} a_{i} \alpha_{i}$, where the a_{i} are in R. It follows that the image of ρ consists of all elements of M^{\prime} of the form $\rho\left(\sum_{i} a_{i} \alpha_{i}\right)=\sum_{i} a_{i} \rho\left(\alpha_{i}\right)$. That is, the image of ρ is the submodule of M^{\prime} spanned by $\rho\left(\alpha_{1}\right), \ldots, \rho\left(\alpha_{n}\right)$, which implies (i).

For (ii), suppose that ρ is not injective. Then $\rho(\alpha)=0_{M^{\prime}}$ for some $\alpha \neq 0_{M}$, and since the α_{i} span M, we can write $\alpha=\sum_{i} a_{i} \alpha_{i}$, where the a_{i} are in R. Since α is non-zero, some of the a_{i} must be non-zero. So we have $0_{M^{\prime}}=\rho\left(\sum_{i} a_{i} \alpha_{i}\right)=\sum_{i} a_{i} \rho\left(\alpha_{i}\right)$, and hence $\rho\left(\alpha_{1}\right), \ldots, \rho\left(\alpha_{n}\right)$ are linearly dependent.

Theorem 14.17. Suppose $\rho: M \rightarrow M^{\prime}$ is an injective R-linear map and that $\alpha_{1}, \ldots, \alpha_{n} \in M$ are linearly independent. Then $\rho\left(\alpha_{1}\right), \ldots, \rho\left(\alpha_{n}\right)$ are linearly independent.

Proof. Suppose that $0_{M^{\prime}}=\sum_{i} a_{i} \rho\left(\alpha_{i}\right)=\rho\left(\sum_{i} a_{i} \alpha_{i}\right)$. Then, as $\operatorname{ker}(\rho)=$ $\left\{0_{M}\right\}$, we must have $\sum_{i} a_{i} \alpha_{i}=0_{M}$, and as the α_{i} are linearly independent, all the a_{i} must be zero.

Theorem 14.18. Let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis for an R-module M, and let $\rho: M \rightarrow M^{\prime}$ be an R-linear map.
(i) ρ is surjective if and only if $\rho\left(\alpha_{1}\right), \ldots, \rho\left(\alpha_{n}\right)$ span M^{\prime}.
(ii) ρ is injective if and only if $\rho\left(\alpha_{1}\right), \ldots, \rho\left(\alpha_{n}\right)$ are linearly independent.
(iii) ρ is an isomorphism if and only if $\rho\left(\alpha_{1}\right), \ldots, \rho\left(\alpha_{n}\right)$ form a basis for M^{\prime}.

Proof. (i) follows immediately from part (i) of Theorem 14.16. (ii) follows from part (ii) of Theorem 14.16 and Theorem 14.17. (iii) follows from (i) and (ii).

EXERCISE 14.1. Show that if a finite collection of elements of an R-module is linearly independent, then any sub-collection is also linearly independent.

Exercise 14.2. Assume R is non-trivial. Show that if a finite collection of elements of an R-module contains the zero element, or contains two identical elements, then it is not linearly independent.

Exercise 14.3. Assume R is trivial and that M is an R-module (which must also be trivial). Show that any finite collection of zero or more copies of 0_{M} is a basis for M.

Exercise 14.4. Let $\rho: M \rightarrow M^{\prime}$ be an R-linear map. Show that if $\alpha_{1}, \ldots, \alpha_{n} \in M$ are linearly dependent, then $\rho\left(\alpha_{1}\right), \ldots, \rho\left(\alpha_{n}\right) \in M^{\prime}$ are also linearly dependent.

14.5 Vector spaces and dimension

Throughout this section, F denotes a field.
A module over a field is also called a vector space. In particular, an F-module is called an F-vector space, or a vector space over F.

For vector spaces over F, one typically uses the terms subspace and quotient space, instead of (respectively) submodule and quotient module; likewise, one usually uses the terms F-vector space homomorphism, isomorphism and automorphism, as appropriate.

Throughout the rest of this section, V denotes a vector space over F.
We now develop the basic theory of dimension for finitely generated vector spaces. The following two theorems provide the keys to this theory.

Theorem 14.19. If V is finitely generated, then any finite set of vectors that spans V contains a subset that is a basis.

Proof. We give an "algorithmic" proof. Let $\alpha_{1}, \ldots, \alpha_{n}$ be a given set of vectors that spans V. Let S_{0} be the empty set, and for $i=1, \ldots, n$, do the following: if α_{i} does not belong to the subspace spanned by S_{i-1}, set $S_{i}:=S_{i-1} \cup\left\{\alpha_{i}\right\}$, and otherwise, set $S_{i}:=S_{i-1}$. We claim that S_{n} is a basis for V.

First, we show that S_{n} spans V. To do this, first note that for $i=1, \ldots, n$, if α_{i} is not in S_{n}, then by definition, α_{i} is a linear combination of vectors in
$S_{i-1} \subseteq S_{n}$. In any case, each α_{i} is a linear combination of the vectors in S_{n}. Since any element β of V is a linear combination of $\alpha_{1}, \ldots, \alpha_{n}$, and each α_{i} is a linear combination of elements of S_{n}, it follows (see Example 14.12) that β is a linear combination of elements of S_{n}.

Second, we show that S_{n} is linearly independent. Suppose it were not. Then we could express 0_{V} as a non-trivial linear combination of elements in S_{n}. Let us write this as

$$
0_{V}=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\cdots+a_{n} \alpha_{n},
$$

where the only non-zero coefficients a_{i} are those with $\alpha_{i} \in S_{n}$. If j is the highest index with $a_{j} \neq 0_{F}$, then by definition $\alpha_{j} \in S_{n}$. However, we see that α_{j} is in fact in the span of S_{j-1}; indeed,

$$
\alpha_{j}=\left(-a_{j}^{-1} a_{1}\right) \alpha_{1}+\cdots+\left(-a_{j}^{-1} a_{j-1}\right) \alpha_{j-1},
$$

and by definition, the only terms with non-zero coefficients are those corresponding to the vectors in S_{j-1}. This means that we would not have added α_{j} to S_{j} at step j, which means α_{j} is not in S_{n}, a contradiction.

Theorem 14.20. If V has a basis of size n, then any collection of $n+1$ elements of V is linearly dependent.

Proof. Let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis, and let $\beta_{1}, \ldots, \beta_{n+1}$ be any collection of $n+1$ vectors. We wish to show that $\beta_{1}, \ldots, \beta_{n+1}$ are linearly dependent.

Since the α_{i} span V, we know that β_{1} is a linear combination of the α_{i}, say, $\beta_{1}=a_{1} \alpha_{1}+\cdots a_{n} \alpha_{n}$. If all the a_{i} were zero, then we would have $\beta_{1}=0_{V}$, and so trivially, $\beta_{1}, \ldots, \beta_{n+1}$ would be linearly dependent (see Exercise 14.2). So assume that not all a_{i} are zero, and for convenience, let us say that $a_{1} \neq 0_{F}$. It follows that α_{1} is a linear combination of $\beta_{1}, \alpha_{2}, \ldots, \alpha_{n}$; indeed,

$$
\alpha_{1}=a_{1}^{-1} \beta_{1}+\left(-a_{1}^{-1} a_{2}\right) \alpha_{2}+\cdots+\left(-a_{1}^{-1} a_{n}\right) \alpha_{n} .
$$

It follows that $\beta_{1}, \alpha_{2}, \ldots, \alpha_{n}$ span V (see Example 14.12).
Next, consider β_{2}. This is a linear combination of $\beta_{1}, \alpha_{2}, \ldots, \alpha_{n}$, and we may assume that in this linear combination, the coefficient of one of $\alpha_{2}, \ldots, \alpha_{n}$ is non-zero (otherwise, we find a linear dependence among the β_{j}), and for convenience, let us say that the coefficient of α_{2} is non-zero. As in the previous paragraph, it follows that $\beta_{1}, \beta_{2}, \alpha_{3}, \ldots, \alpha_{n}$ span V.

Continuing in this way, we find that $\beta_{1}, \ldots, \beta_{n}$ are either linearly dependent or they span V. In the latter case, we find that β_{n+1} is a linear combination of $\beta_{1}, \ldots, \beta_{n}$, and hence, the vectors $\beta_{1}, \ldots, \beta_{n}, \beta_{n+1}$ are linearly dependent.

We stress that the proofs of Theorems 14.19 and 14.20 both made critical use of the assumption that F is a field. An important corollary of Theorem 14.20 is the following:

Theorem 14.21. If V is finitely generated, then any two bases have the same size.

Proof. If one basis had more elements than another, then Theorem 14.20 would imply that the first basis was linearly dependent, which contradicts the definition of a basis.

Theorem 14.21 allows us to make the following definition:
Definition 14.22. If V is finitely generated, the common size of any basis is called the dimension of V, and is denoted $\operatorname{dim}_{F}(V)$.

Note that from the definitions, we have $\operatorname{dim}_{F}(V)=0$ if and only if V is the trivial vector space (i.e., $V=\left\{0_{V}\right\}$). We also note that one often refers to a finitely generated vector space as a finite dimensional vector space. We shall give preference to this terminology from now on.
To summarize the main results in this section up to this point: if V is finite dimensional, it has a basis, and any two bases have the same size, which is called the dimension of V. The next theorem is simple consequences of these results.

Theorem 14.23. Suppose that V is of finite dimension n, and let $\alpha_{1}, \ldots, \alpha_{n} \in V$. The following are equivalent:
(i) $\alpha_{1}, \ldots, \alpha_{n}$ are linearly independent.
(ii) $\alpha_{1}, \ldots, \alpha_{n}$ span V.
(iii) $\alpha_{1}, \ldots, \alpha_{n}$ form a basis for V.

Proof. Let W be the subspace spanned by $\alpha_{1}, \ldots, \alpha_{n}$.
First, let us show that (i) implies (ii). Suppose $\alpha_{1}, \ldots, \alpha_{n}$ are linearly independent. Also, by way of contradiction, suppose that $W \subsetneq V$. Choose $\beta \in V \backslash W$. Then it follows that $\alpha_{1}, \ldots, \alpha_{n}, \beta$ are linearly independent; indeed, if we had a relation $0_{V}=a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n}+b \beta$, then we must have $b=0_{F}$ (otherwise, $\beta \in W$), and by the linear independence of $\alpha_{1}, \ldots, \alpha_{n}$, all the a_{i} must be zero as well. But then we have a set of $n+1$ linearly independent vectors in V, which is impossible by Theorem 14.20.

Second, let us prove that (ii) implies (i). Let us assume that $\alpha_{1}, \ldots, \alpha_{n}$ are linearly dependent, and prove that $W \subsetneq V$. By Theorem 14.19, we can find a basis for W among the α_{i}, and since the α_{i} are linearly dependent, this basis
must contain strictly fewer than n elements. Hence, $\operatorname{dim}_{F}(W)<\operatorname{dim}_{F}(V)$, and therefore, $W \subsetneq V$.

The theorem now follows from the above arguments, and the fact that, by definition, (iii) holds if and only if both (i) and (ii) hold.
We next examine the dimension of subspaces of finite dimensional vector spaces.

Theorem 14.24. If V is finite dimensional, and W is a subspace of V, then W is also finite dimensional, and $\operatorname{dim}_{F}(W) \leq \operatorname{dim}_{F}(V)$. Moreover, $\operatorname{dim}_{F}(W)=\operatorname{dim}_{F}(V)$ if and only if $W=V$.

Proof. To see this, suppose $\operatorname{dim}_{F}(V)=n$, and assume that W is non-trivial. We shall construct a basis $\alpha_{1}, \ldots, \alpha_{m}$ for W, where $m \leq n$. We can take α_{1} to be any non-zero vector in W, α_{2} to be any vector in W not in the subspace spanned by α_{1}, and so on. More generally, at stage $i=1,2, \ldots$, we take α_{i} to be any element of W not in the subspace spanned by $\alpha_{1}, \ldots, \alpha_{i-1}$. It is easy to see that at each stage i, the vectors $\alpha_{1}, \ldots, \alpha_{i}$ are linearly independent: if we had a relation $a_{1} \alpha_{1}+\cdots a_{j} \alpha_{j}=0_{V}$, where $j \leq i$ and $a_{j} \neq 0_{F}$, this would imply that α_{j} lies in the subspace generated by $\alpha_{1}, \ldots, \alpha_{j-1}$, which contradicts the definition of how α_{j} was selected. Because of Theorem 14.20, this process must halt at some stage $m \leq n$, and since the process does halt, it must be the case that $\alpha_{1}, \ldots, \alpha_{m}$ span W.
That proves that W is finite dimensional with $\operatorname{dim}_{F}(W) \leq \operatorname{dim}_{F}(V)$. It remains to show that these dimensions are equal if and only if $W=V$. Now, if $W=V$, then clearly $\operatorname{dim}_{F}(W)=\operatorname{dim}_{F}(V)$. Conversely, if $\operatorname{dim}_{F}(W)=$ $\operatorname{dim}_{F}(V)$, then by Theorem 14.23, any basis for W must already span V.

Theorem 14.25. If V is finite dimensional, and W is a subspace of V, then the quotient space V / W is also finite dimensional, and

$$
\operatorname{dim}_{F}(V / W)=\operatorname{dim}_{F}(V)-\operatorname{dim}_{F}(W) .
$$

Proof. Suppose that S is a finite set of vectors that spans V. Then $\{\alpha+$ $W: \alpha \in S\}$ is a finite set of vectors that spans V / W. It follows from Theorem 14.19 that V / W has a basis, say, $\alpha_{1}+W, \ldots, \alpha_{\ell}+W$. Suppose that $\beta_{1}, \ldots, \beta_{m}$ is a basis for W. The theorem will follow immediately from the following:
Claim. The vectors

$$
\begin{equation*}
\alpha_{1}, \ldots, \alpha_{\ell}, \beta_{1}, \ldots, \beta_{m} \tag{14.2}
\end{equation*}
$$

form a basis for V.

To see that these vectors span V, consider any element γ of V. Then since $\alpha_{1}+W, \ldots, \alpha_{\ell}+W$ span V / W, we have $\gamma \equiv \sum_{i} a_{i} \alpha_{i}(\bmod W)$ for some $a_{1}, \ldots, a_{\ell} \in F$. If we set $\beta:=\gamma-\sum_{i} a_{i} \alpha_{i} \in W$, then since $\beta_{1}, \ldots, \beta_{m}$ span W, we have $\beta=\sum_{j} b_{j} \beta_{j}$ for some $b_{1}, \ldots, b_{m} \in F$, and hence $\gamma=\sum_{i} a_{i} \alpha_{i}+$ $\sum_{j} b_{j} \beta_{j}$. That proves that the vectors (14.2) span V. To prove they are linearly independent, suppose we have a relation of the form $\sum_{i} a_{i} \alpha_{i}+$ $\sum_{j} b_{j} \beta_{j}=0_{V}$, where $a_{1}, \ldots, a_{\ell} \in F$ and $b_{1}, \ldots, b_{m} \in F$. If any of the a_{i} were non-zero, this would contradict the assumption that $\alpha_{1}+W, \ldots, \alpha_{\ell}+W$ are linearly independent. So assume that all the a_{i} are zero. If any of the b_{j} were non-zero, this would contradict the assumption that $\beta_{1}, \ldots, \beta_{m}$ are linearly independent. Thus, all the a_{i} and all the b_{j} must be zero, which proves that the vectors (14.2) are linearly independent. That proves the claim.

Theorem 14.26. If V is of finite dimension, then any linearly independent set of elements of V can be extended to form a basis for V.

Proof. This is actually implicit in the proof of the previous theorem. Let $\beta_{1}, \ldots, \beta_{m} \in V$ be linearly independent. Let W be the subspace of V spanned by $\beta_{1}, \ldots, \beta_{m}$, so that $\beta_{1}, \ldots, \beta_{m}$ form a basis for W. As in the proof of the previous theorem, we can choose $\alpha_{1}, \ldots, \alpha_{\ell} \in V$ such that $\alpha_{1}+W, \ldots, \alpha_{\ell}+W$ form a basis for the quotient space V / W, so that

$$
\alpha_{1}, \ldots, \alpha_{\ell}, \beta_{1}, \ldots, \beta_{m}
$$

form a basis for V.
Example 14.23. Suppose that F is finite, say $|F|=q$, and that V is finite dimensional, say $\operatorname{dim}_{F}(V)=n$. Then clearly $|V|=q^{n}$. If W is a subspace with $\operatorname{dim}_{F}(W)=m$, then $|W|=q^{m}$, and by Theorem 14.25, $\operatorname{dim}_{F}(V / W)=$ $n-m$, and hence $|V / W|=q^{n-m}$. Just viewing V and W as additive groups, we know that the index of W in V is $[V: W]=|V / W|=|V| /|W|=q^{n-m}$, which agrees with the above calculations.

We next consider the relation between the notion of dimension and linear maps.

Theorem 14.27. If V is of finite dimension n, and V is isomorphic to V^{\prime}, then V^{\prime} is also of finite dimension n.

Proof. If $\alpha_{1}, \ldots, \alpha_{n}$ is a basis for V, then by Theorem 14.18, $\rho\left(\alpha_{1}\right), \ldots, \rho\left(\alpha_{n}\right)$ is a basis for V^{\prime}.

Theorem 14.28. If $\rho: V \rightarrow V^{\prime}$ is an F-linear map, and if V and V^{\prime} are finite dimensional with $\operatorname{dim}_{F}(V)=\operatorname{dim}_{F}\left(V^{\prime}\right)$, then we have:
ρ is injective if and only if ρ is surjective.
Proof. Let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis for V. By Theorem 14.18, we know that ρ is injective if and only if $\rho\left(\alpha_{1}\right), \ldots, \rho\left(\alpha_{n}\right)$ are linearly independent, and that ρ is surjective if and only if $\rho\left(\alpha_{1}\right), \ldots, \rho\left(\alpha_{n}\right) \operatorname{span} V^{\prime}$. Moreover, by Theorem 14.23, we know that the vectors $\rho\left(\alpha_{1}\right), \ldots, \rho\left(\alpha_{n}\right)$ are linearly independent if and only if they span V^{\prime}. The theorem now follows immediately.

This last theorem turns out to be extremely useful in a number of settings. Generally, of course, if we have a function $f: A \rightarrow B$, injectivity does not imply surjectivity, nor does surjectivity imply injectivity. If A and B are finite sets of equal size, then these implications do indeed hold. Theorem 14.28 gives us another important setting where these implications hold, with finite dimensionality playing the role corresponding to finiteness.

Theorem 14.28 may be generalized as follows:
Theorem 14.29. If V is finite dimensional, and $\rho: V \rightarrow V^{\prime}$ is an F-linear map, then $\operatorname{img}(\rho)$ is a finite dimensional vector space, and

$$
\operatorname{dim}_{F}(V)=\operatorname{dim}_{F}(\operatorname{img}(\rho))+\operatorname{dim}_{F}(\operatorname{ker}(\rho))
$$

Proof. As the reader may verify, this follows immediately from Theorem 14.25, together with Theorems 14.27 and 14.11.

Intuitively, one way to think of Theorem 14.29 is as a "law of conservation" for dimension: any "dimensionality" going into ρ that is not "lost" to the kernel of ρ must show up in the image of ρ.

ExERCISE 14.5. Show that if V_{1}, \ldots, V_{n} are finite dimensional vector spaces, then $V_{1} \times \cdots \times V_{n}$ has dimension $\sum_{i=1}^{n} \operatorname{dim}_{F}\left(V_{i}\right)$.

ExErcise 14.6. Show that if V is a finite dimensional vector space with subspaces W_{1} and W_{2}, such that $W_{1}+W_{2}=V$ and $W_{1} \cap W_{2}=\left\{0_{V}\right\}$, then $\operatorname{dim}_{F}(V)=\operatorname{dim}_{F}\left(W_{1}\right)+\operatorname{dim}_{F}\left(W_{2}\right)$.

ExERCISE 14.7. The theory of dimension for finitely generated vector spaces is quite elegant and powerful. There is a theory of dimension (of sorts) for modules over an arbitrary, non-trivial ring R, but it is much more awkward and limited. This exercise develops a proof of one aspect of this theory: if an R-module M has a basis at all, then any two bases have the same size.

To prove this, we need the fact that any non-trivial ring has a maximal ideal (this was proved in Exercise 9.30 for countable rings). Let n, m be positive integers, let $\alpha_{1}, \ldots, \alpha_{m}$ be elements of $R^{\times n}$, and let I be an ideal of R.
(a) Show that if $\alpha_{1}, \ldots, \alpha_{m}$ span $R^{\times n}$, then every element of $I^{\times n}$ can be expressed as $a_{1} \alpha_{1}+\cdots a_{m} \alpha_{m}$, where a_{1}, \ldots, a_{m} belong to I.
(b) Show that if $m>n$ and I is a maximal ideal, then there exist $a_{1}, \ldots, a_{m} \in R$, not all in I, such that $a_{1} \alpha_{1}+\cdots a_{m} \alpha_{m} \in I^{\times n}$.
(c) From (a) and (b), deduce that if $m>n$, then $\alpha_{1}, \ldots, \alpha_{m}$ cannot be a basis for $R^{\times n}$.
(d) From (c), conclude that any two bases for a given R-module M must have the same size.

